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Abstract. We made a Monte Carlo simulation of the two-dimensional Potts model with 
q = 3, 4 and 5 to examine the question whether numerical methods can distinguish the 
order of a phase transition for the subtle cases that this model exemplifies. We found that 
the finite-size scaling test for susceptibilities has sufficient power for this purpose, whereas 
the simple method of detecting metastability signals often fails. 

Determination of the order of phase transitions presents the first basic step in the 
analysis of statistical systems. There are only a few cases where this problem can be 
solved analytically, and for most physically interesting systems one has to rely on 
numerical simulation techniques to determine the order. This method, though quite 
powerful [l], has an inherent limitation of a finite lattice size and finite statistics, 
determined by computing resources available. This sometimes leads to a controversy 
on the order. A recent instance is the deconfining phase transition of the pure SU(3) 
gauge theory [2]. Fortunately, this system has a first-order transition strong enough 
so that a relatively small effort was sufficient to elucidate its nature [3]. In general 
problems arise when a first-order transition is so weak that the correlation length at 
the transition point is large, exceeding the dimension of the system practically feasible 
in the simulation. Also a subtle situation is encountered for a system close to a 
multicritical point [4,5]. There is then a general practical problem of what quantities 
best serve as indicators for the order of a phase transition, and to what extent the 
method conventionally used leads to a decisive answer on the order in Monte Carlo 
simulations. 

In this letter we consider this problem, taking as an example the q-state Potts model 
in two dimensions defined by 

with si taking q possible values?. We choose the model because it provides one of 
the most subtle cases so far known, and yet the nature of its phase transition is well 
understood; the system has a second-order transition for the number of spin states 

Yl A Monte Carlo simulation of this model was previously made by Binder [6]. This work, however, did 
not actively examine the points addressed here. 
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q s 4 [7] with the critical indices explicitly known [8,9]. The transition for q > 4 is 
first order [7], but close to q = 4 the correlation length at the transition point is quite 
large, e.g. O( 100) for the q = 5 model [ 101. (For reviews, see Wu [ 1 1 1  and Barber [ 121.) 

The most popularly used indicator for a first-order phase transition in Monte Carlo 
simulations is a metastability signal between the low and high temperature states and 
the associated double peak structure of observable histograms; our belief is that the 
histogram should be singly peaked for a second-order transition. However, it has been 
reported [5] that the q = 4  model with a second-order transition exhibits a doubly 
peaked histogram in the energy and an order parameter. A similar result has been 
known for a tricritical q = 2 model [4]. 

In order to examine whether this is a real effect, and not due to insufficient statistics, 
we have studied the q = 3, 4 and 5 Potts models on a L x L square lattice making two 
million sweeps per @ by the standard heat-bath algorithm for L = 32, 64, and 128 and 
ten million sweeps for L = 196 and 256 with the periodic boundary condition. Two 
definitions of the order parameter were used: 

(Dl =max{p,In = 1 , .  . . , q }  (2) 

with 

the number of spins in the nth state. The first is the maximum population definition 
usually used in the literature. The second represents a generalisation of Ipl -p21 for 
the Ising case ( q  = 2), taking values between 0 (completely disordered) and 1 (com- 
pletely ordered). 

In figure 1 we show the histogram for L=256 for the order parameter (Dl (the 
results for (D2 are similar) and the energy E per bond close to P c .  A clear double peak 
is seen in both quantities for q = 5  as expected for the first-order transition of the 
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system. We did not detect any signal for the spurious states as reported by Katznelson 
and Lauwers [ 131 with our statistics 30 times that of their longest run. A double peak, 
though less pronounced, is also clearly observed in CP, for the 4 = 4 model, as reported 
in [5], while that in E is less clear. It is our suprise to find in CP, a wide plateau, 
suggestive of a double peak with a shallow valley, even for q = 3, not so close to the 
critical value q = 4. We found that these structures for q = 3 and 4 change little with 
the lattice size. The time history of a, fluctuates irregularly. Nevertheless, it is not 
impossible to take the fluctuating pattern as evidencs for metastability. With only 
these data one might mistakenly conclude a first-order transition. 

The double peak for q = 4 and 3 is expected to merge into a single peak as L + 00. 

Our runs show, however, that the approach is very slow, and observing a single peak 
does not seem feasible in practice. These examples warn that determining the order 
of phase transition from a double peak structure in the histogram could sometimes be 
rather subtle. 

We then studied whether the finite-size scaling analysis [ 12,141 can disentangle 
this subtle situation. We examined the behaviour of the susceptibilities, 

xi = L2((@f) - (W2) i = 1 , 2  ( 5 )  

drawing curves for xi as a continuous function of p with the spectral density method 
[15,16]. The height x , , , , ~ ~  of the peak of the susceptibility x, is plotted in figure 2 as 
a function of L2, and full curves represent the finite-size scaling prediction ,ymaxx LY" 
with y /  v = 26/ 15  ( q  = 3), 7/4 ( q  = 4) [7] and xmax L2 ( q  = 5 )  (see below for the q = 4 
case for more detail). In order to check the agreement more closely, we fitted 
with a power form 

Xi,max = ALP' i =  1,2. (6) 
The resulting index pi using the lattice sizes L = 32 - 256 is tabulated in table 1 together 
with the chi-square (x') of the fit obtained by the jack-knife error as input. The result 
pi = 1.742( 1 1 )  and p 2  = 1.744( 1 1 )  for q = 3 are quite close to the exact value p = y /  v 
which takes 26/15 = 1.733. For q = 5 ,  the fitted powers pi = 1.893(10), p 2 =  1.915(10) 
are a little smaller than the first-order index p = 2. They, however, are constrained 

L 

Figure 2. Peak height of the susceptibility x ,  as a function of the volume L2. Curves shown 
are the prediction with the finite-size scaling formula with the exactly known indices. 
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Table 1. Power indices of the height of the peak in susceptibilities. 

4 B1 X 2  Pz X 2  Pexam 

3 1.742(11) 3.2 1.744 ( 1  1) 4.3 26/15 = 1.733 
4 1.775 (IO) 5.9 1.789 (IO) 6.6 7 / 4 =  1.75 
5 1.893 (10) I .4 1.915 (IO) 1 . 1  2 

particularly by the small size data of L = 32 and 64, and slowly increase with the size; 
e.g. p1 = 1.88(2) for L = 32 - 128 and 1.95(7) for L = 128 - 256. This slow variation may 
be ascribed to the large correlation length of O(100) at the transition point for q = 5 
[lo]. This analysis allows us to conclude that the phase transition of the Potts model 
with q = 3 is definitely second order, and that for q = 5 is consistent with first order 
within our lattice size and statistics. 

For the critical case q = 4  the indices from the pure power fit (6) (p,  = 1.775(10), 
p 2  = 1.789(10)) are slightly smaller than the exact value 7/4. For this case with a 
marginal operator we expect logarithmic corrections in the finite-size scaling formula 
[ 171. Following the treatment of [ 171, we can easily derive the susceptibility scaling as 

x - L7l4( a + 6 log L)-'/'. (7)  
We attempted to fit the data with this form. We could not confirm the logarithmic 
correction with a small power, however, as the constant a dominates over the log L 
term for our lattice size. 

We conclude that the finite-size scaling analysis of the susceptibility is capable of 
distinguishing between a first- and a second-order transition even for the most subtle 
case examined here, where a simple method of detecting metastability fails. 

We have also made an analysis for the specific heat C =aE/ap (see figure 3) .  
Assuming 

(8) 
for the height of the specific-heat peak, we obtained r = 0.44(7) for q = 3 using L = 
32 - 256 (exact solution predicts it to be 2/51. For q = 4 this simple form underestimates 

C,,, = AL' + B 

1 2 0 1 '  ' 8 ' I 1 '  " I " " 1 "1 

L 

Figure 3. Peak height of the specific heat as a function of the volume L2. Curves are 
obtained with the fitting functions discussed in the text. 
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the index (r=0.75(5) for L =  32-256 as compared with the exact value r = 1; for 
discussion on this point, see [ 121 and references therein). The logarithmic correction, 
however, is quite significant here and the theoretical prediction C,,, - 
L ( A +  B log L)-3'2 [17] indeed fits the data well (x2=3.3) .  With (8) the first-order 
index ( r  = 2) is not obtained for q = 5 (we find r = 1.2(4)). However an excellent fit is 
achieved ( x 2 =  l . l) ,  if the form suggested by Ferrenberg and Swendsen [16] 

C m a x ( L ) = a L 2 +  B + C  exp(-LILO) ( 9 )  

is adopted with a = AE2 and the latent heat AE fixed to the theoretical value 0.0265 
[7], as shown in figure 3. The parameter Lo turns out to be large, -500. This may 
not be unreasonable since the correlation length is O( 100) at p = pc.  Therefore, we 
can conclude that our data for the specific heat also nicely agree with the expected 
behaviour for all cases. On the other hand, the need for terms additional to the pure 
power in L diminishes the merit of using C,,, for the order determination when we 
do not know the nature of the finite-size behaviour a priori. 

Finally we studied the reduced cumulant proposed by Challa, Landau and Binder 
(CLB) [18] as an indicator of the order of phase transitions 

A 

- *  - 
:256 
- 196 ' - 

128 
- 

- - 

L=  64 
a 3 1 s 8 8 I a a 0 I * t a I 8 I 1 1 3  3 8 1~ 

Figure 4 shows the minimum value of this quantity VLVmin as a function of L-2 
observe that VL,min for q = 3 and 4 converges to 213 within statistical accuracy 
increases. On the other hand, VL,min for q = 5 does not seem to approach 2/3. 

(10) 

We 
as L 
It is 

interesting to remember that the distribution of energy for the q = 4 case exhibits a 
double-peak like structure even at the largest lattice that we worked with (see figure 
1). This indicates the effectiveness of the CLB indicator even for this marginal case. 

In this letter we have seen that the conventionally adopted indicator of detecting 
metastability signals for a first-order transition may fail for some cases, and particular 
care is necessary when the separation of two states is not clear. We have demonstrated 
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that the finite-size scaling test reveals its power even for the most subtle cases. In our 
example, we could conclude solely from numerical simulations that the q = 4 Potts 
model has a second-order transition and the q = 5 model has a first-order transition. 
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